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1 Introduction and Development of the Theory 
We start by writing some general relations between measurements of electro- 
magnetic radiation in the time and frequency domains. The total intensity of 
light (electromagnetic radiation) is written as a long-time average of the 
instantaneous intensity, I ( t ) ,  

where the brackets indicate the long-time average. The instantaneous intensity 
is given in terms of the electric fields of the electromagnetic radiation according to 

I ( t )  = E*(t)  E( t )  , 477 
where we use the complex form for the instantaneous electric field, E ( t ) .  
We also define the spectral distribution function, I(w), which has units of 
energy (area x t x w)-l. Thus, the total intensity which is equal to I i n  equation 
(1) is given by integrating Z(w) over all frequencies : 

fa3  

--co T+cO 2T -T 
I = 5 I(w) dw = lim {L 1’’ I(t)dt) - 

Substituting equation (2) into equation (3) gives 

I = 9 ’ I(w) d o  = (Z(t)) = ( E * ( t )  E ( t ) )  , -a 47r 

(3) 

(4) 

where the brackets again indicate the long-time average. 
We now define the correlation function for the electric field,] 

C(T) = lim L- {L E*(t)  E(t  + 7) dt] = (E*(t)  E(t  + 7)) , ( 5 )  
T+o3 47r 477 

* Based on the Centenary Lectures of the Chemical Society given in January, 1976, and on a 
short course on Light Scattering given at Colorado State University in June, 1976. 
The measurement of the correlation function from optical electromagnetic fields is discussed 
in B. Chu, ‘Laser Light Scattering’, Academic Press, New York, 1974. 
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where we note from equations (4) and ( 5 )  that 

It  is also easy to show that C(7) and I(w) are Fourier transform pairs related by 

C(T) = I(w) exp (- iw7) dw 5:: 
1 f+oo 

I(w) = - Re C(T) exp (iw7) d7 , (7) v 5: 
where the last step indicates the real part of the integral. This last important 

step is easily proven given that I(w) is real. 
It is now evident that if we can measure either C(T) or Z(w), we can use the 

Fourier transform to obtain the other member of the pair.2 
The above definitions and equations are general and can be used to analyse 

the spectrum of a given distribution of electromagnetic fields. We will now 
introduce the more useful ensemble average over all positions and momenta 
which is essential to evaluating the correlation function for a system of scattering 
atoms or molecules. First, we define a stationary system which requires that the 
time average in equation (5 )  leading to the correlation function is independent 
of the origin in time. Thus, for a stationary system we can write 

K 

Now for a stationary system, the ergodic hypothesis states that each scattering 
system in the ensemble of particles will pass through all values accessibIe to it, 
given a sufficiently long time. Thus, the time average is essentially the same for 
all systems of the ensemble. The result is that for a stationary ergodic system, 
the time average is equivalent to the ensemble a~erage .~  When the brackets in 
equation (5 )  indicate an ensemble average, the relation between C(7) and I(w) 
discussed above is called the Wiener-Khintchine theorem.4 

We will find it useful to examine more carefully the properties of the correlation 
functions and spectra as related to a scattering experiment. Starting with 
zy-polarized radiation travelling along the y axis, as shown in Figure 1, we can 
write the complex dipole field scattered from thejth scatterer into a detector at a 
distance R from the origin of the scattering system according to5 

a ‘Photon Correlation and Light Beating Spectroscopy’, ed. H. Z .  Cummins and E. R. Pike, 
Plenum Press, New York, 1973. 
F. Reif, ‘Fundamentals of Statistical and Thermal Physics’, McGraw-Hill, New York, 1965. 
C. Kittel, ‘Elementary Statistical Physics’, Wiley, New York, 1958. 
See, for instance, P. Lorraine and D. R. Corson, ‘Electromagnetic Fields and Waves,’ 
W. H. Freeman and Co., San Francisco, 2nd Edn., 1970. 
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where Uy is the unit vector along the polar angle y. wo and EO are the frequency 
and amplitude of the incident radiation, respectively, aj(t) is the polarizability 
tensor of the jth scatterer in the laboratory-fixed axis system (which is time 

i incident radiation 
parallel to z I 

pinri7ation 1 

clnalyzer 

Scattering Vector k,. - k,s 

10 
K = .cl-rrn sin(8,/2) 

Figure 1 Basic scattering diagram showing plane-polarized z axis ( I!) incident radiation 
which is scattered along the line shown to the detector at angles y and BS. Choosing y = n/2, 
we note either polarized (z axis, 1) or depolarized (xy plane, I) scattered light designated 
by IvV and Ihv, respectively. ko and ks are the incident and scattered wave vectors, n is the 
refractive index in the scattering medium, A, is the vacuum wavelength of the radiation, and 
K is the scattering vector. 

dependent due to the rotation of a non-spherical scatterer), K = ko - ks is the 
scattering vector, which bisects the angle between the incident (ko) and scattered 
(ks) radiation, and rj(t) is the centre of mass (cam.) position of thejth scatterer 
from an arbitrary origin in the scattering system. rj(t) is, of course, time dependent 
if the scatterer has translational freedom (liquid or gas). Figure 1 shows the 
basic scattering diagram where the incident light, travelling along the y axis, is 
plane-polarized in the vertical z direction (ExO = Ego = 0) and the scattered 
light is observed along a line which is at an angle of y with respect to the z axis. 
The scattering angle 8, is between they axis and the line of observation. Of course, 
we could also start with x-polarized incident radiation. Of the large number of 
incident and scattered polarizations and values y and &, we will usually choose 
a set of values which corresponds to those which are most often used for experi- 
mental studies. These correspond to zy-polarized incident radiation and obser- 
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vation in the xy plane (y = 5712) of either parallel ( 1 1 )  or perpendicular (I) 
polarized scattered radiation. These choices are also shown schematically in 
Figure 1.  A polarization analyser selects the scattered radiation which is polarized 
parallel to either the z( 1 1 )  or y ( I )  axes). These xy in-plane fields are given from 
equation (9). 

W02 

RC2 
11, E2j(t) = - Ezoazzj(t) exp (- ho t )  exp [iK-rj(t)] 

W02 

RC I, E1/j(t) = 2 Ezomzyi(t) exp (- iwr)  exp [iK*rj(t)] . (10) 

We can now write the total fields scattered in phase into the detector by summing 
over a l l j  scatterers. Substituting this sum into equation (8) gives the correlation 
functions : 

11, Cz(7) = - (Ez(O)* Ez(7)) = A 
i. i 
C azzi(0) c ~ ( T )  exp (- iom) 

exp {-iK-[ri(O) - Q ( T ) ] }  (11)  

( 
c 

47r 

) 
I, ~ ( 7 )  = C (E,(O)* ~ ~ ( 7 ) )  = A azyi(o) azl/i(T> exp ( - iwo7) 477 

exp { - iK- [ui(O) - Y j ( T ) ] }  

where the sums over i and j are independent with all terms in i at t = 0 and all 
terms in j at t = T being included. I0 is the incident intensity for the plane- 
polarized radiation. If the incident radiation is unpolarized, we write 

COO* 
A = -  (5) (1 + COS2 8,) . 

c4R2 
The correlation functions in equations (1 1)  and (12) are written6 in terms of the 
initial t = 0 and later t = T positions and orientations and the brackets indicate 
the time average or the equivalent ensemble average according to the ergodic 
hypothesis. 

The orientational correlation is contained in the azzi(0) azzj(T)and azl/i(0) C X ~ ~ ~ ( T )  

termsand the translationalcorrelation iscontainedin theexp { - iK- [ri(O) - Q(T)]  } 

C,(T), which indicates the correlation function for y-polarized scattered light, is valid at any 
angle 6, in the xy plane (y = 7r/2). In this expression we use CV(7) = [c/(47r)] <Ey(f)Eu*(f+T)>. 
However, C,(T) = [c/(47r)] (Ez(t)Ez*(t + T ) )  is equally valid. We can write the scattered 
field at angle 8, in Figure 1 as a linear combination of E,(t) and Ey(t), Eos = sin &Ex + 
cos &E,, where<EeS(t)Ees*(f + T ) )  = sin2 0, (E,(t)E,*(t + T ) )  + cos2 OS <E,(t)E,*(t+T)>, 
where (E,(t)E,(t + T)> = 0. Now, it is easy to show that <EZ(t)Ez*(f + T)> = <EV(r)Ey* 
( I  + T ) )  and, therefore, (Ep( t )Ep*( t  + 7) )  = (Ez(t)Ex*(t + 7)) = <Ey(t)Ey*(t + 7)) .  
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phase factors. The i = j terms are called the self terms and the i # j terms are 
called the distinct terms. In gases, it is reasonable to assume that the dominant 
contributions will arise from the self terms. Of course, in liquid crystal-like 
systems we would expect significant i # j contributions and in solids we expect 
even larger i # j contributions. 

We will now examine the nature of the polarizability tensor elements which 
enter the correlation functions in equations (11) and (12). We remember that in 
the presence of an electromagnetic field with frequency w, the system (molecule) 
is described by the time-dependent function y ( r ,  t )  in terms of the stationary 
states, $&), and time-dependent coefficients, Br(t), according to Y ( r ,  t )  = 

Bi(t)  $&), where Bi(t) = exp (- iEit/h) Ci(t). Assuming that the perturbation 
is small and that the system is initially in the kth state, Ci(t) 4 G ( t )  z 1.0 and 
we write the time-dependent function as 

i 

Y ( r ,  t )  = $k(r)  exp (- iEkt/h) + F' C&) exp (- iEit/h) $i(t) , (14) 

where the prime on the summation excludes the kth term. The value of G ( t )  is 
given from perturbation theory for the electric dipole interaction Hamiltonian 
perturbation, X' = - E - D ,  between the molecular dipole moment operator, 
D, and the incident radiation electric field, 

E = 2Eocos(k*r - ot) , 

We can think of the kth state as a vibration-rotation state in the ground elec- 
tronic state and the sum over i is over the excited electronic (vibration-rotation) 
states, We now calculate the average value of the D operator to first order in 
Ci(t) for the time-dependent system described in equations (14) and (15) to give 
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where Dki = #k*(Y) D$t(r) d V and the denominator is unity to first order in 
the coefficients, C&). We note from this expression that k and k’ can represent 
two different vibration-rotation states in the ground electronic state and the 
primes on the summation omit the i = k and i = k’ terms, respectively. 
Remembering that Wik - ~ i k .  = 1 / f i  (Ei - E k  - Ez + Ek!) = 1/f i  (Ek# - Ek) = 
~ k . k  = - w ~ R , ,  where Wik is an electronic transition frequency and Wkkt is a 
vibration-rotation or rotational transition frequency in the ground electronic 
state, we can rewrite this equation to give 

} (17) 
exp [i(wk + w)t ]  exp [i(Wk.k - ~ ) t ]  

W i k .  + 0 + 
Wik, - cr) 

Eo 
-k - c’ Dkti Dfk 

h i  
This general expression for the polarizability tensor shows that the polarizability 
and resultant intensity of the scattering will increase as w + WZk. This condition 
of resonant Rayleigh (k  = k’)7 and resonant Raman (k  # k’) scattering is 
useful in enhancing the sensitivity of the scattering if a suitable light source is 
avaiIable with a frequency, W ,  near one of the electronic resonant frequencies, 
~ i k .  Resonant vibrational Raman scattering has been particularly useful in 
identifying specific local vibrations on a site in a large macromolecule.8 
Now, we note that normally ~ i k  3- Wkpk because ~ i k  is the angular frequency of 
an electronic transition and wk,k is the angular frequency of a vibrational, 
vibration-rotation, or pure rotational transition. Thus, it is reasonable to 
assume that ~ i k  = WZkt for Raman and Rayleigh scattering. Now if L L I ~ ~  II W Z ~ .  

in equation (1 7), we can write 

Thus, the polarizability is given from Dind = a . E  to be 

We can relate the space-fixed polarizability tensor in equation (19), a(xyz), to 
the corresponding values in the molecular-fixed axes, a(abc), by the direction 
cosine transformation, C ,  which gives a(xyz)  = C+a(abc)C. According to 
equations (1 1) and (12), we need 

ffzz = C z a a a a C a z  + C z b a b b c b z  4 C z c a c c C c z  

f f zy  = C z a a a a C a y  -k C z b a b b C b y  + c z c a c c f f c y  , 

D. R. Bauer, B. Hudson, and R. Pecora, J. Chem. Phys., 1975, 63, 588 .  
8T. G. Spiro, Accounts. Chem. Res., 1974, 7 ,  339. 
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where Cza is the direction cosine between the a and z axes. Now if we choose a 
cylindrically symmetric molecule with aaa # a b b  = acc (where a is the symmetry 
axis) and if we place the a, b, and z axes in a plane (with no loss in generality), 
we can relate a(xyz) to a(abc) through the standard spherical polar angles, 6 and 
cp. If x + b, y -+ c, and z -+ a when 8 = cp = 0, we can show that 

azz = a + Q ( ~ ~ ~  - abb) P ~ ( ~ ~ ~  e) 
azy = (aaa - abb)cosOsin#sin cp (20) 

where Pz(c0s 8) = +(3 cos # - +) is the Legendre polynomial of order I = 2 and 
a = +(aaa + am + act). If the scattering (molecule) is vibrating, we must also 
include the vibrational dependence in the polarizability tensor elements by 
expanding each tensor element in the molecular-fixed axis system about the 
small-amplitude molecular vibrations according to 

where aaao is the equilibrium structure polarizability. The change in polarizability 
with normal co-ordinate, Qi, is evaluated at equilibrium. In summary, we now 
have the formal expressions to write the correlation functions in equations (1 1) 
and (1 2) for the general vibrating-rotating molecule. 

We now return to equations (11) and (12) to examine the correlation functions 
at very high pressures or in the condensed phase (liquid) where the time between 
collisions is short relative to a molecular-rotation period. To simplify our dis- 
cussion we will initially assume a rigid non-vibrating rotor and substitute 
equation (20) into equations (11) and (12). If the scatterers are randomly orien- 
tated in space (isotropic distribution), the averages of the aPz(c0s @ j  and 
aPz(cos #)i cross-terms will vanish. We also assume that all non-vibrating 
molecules or scatterers in the gas, liquid, or solid are equivalent and that a and 
(aaa - am) are time-independent. Acknowledging the above statements, we 
obtain 

I, Cy(t) = A exp ( - iwt ) (aaa  - a b b ) 2  

x (c (cos o sin 8 sin cp)oi (cos e sin e sin q)j 

exp { - iK* [ri(O) - rj(t)l1 , (23) ) 
i, j 

where 8 and cp are time-dependent due to molecular rotation. The subscript 0 
are the t = 0 values in the correlation functions. The terms within the time- 
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average brackets contain the independent sums over i andj. The i = j are called 
the self terms and i # j terms are called the distinct terms as mentioned previously. 
Having defined the concept of the self and distinct correlations, we now rewrite 
equations (22) and (23) in a form which includes both the self and distinct 
parts in single terms. Using the ergodic hypothesis, the correlation functions for 
identical scatterers are given by the following averages over position and orienta- 
tion: 

CZ(t) = A exp (- h o t )  Na2 exp (iK*R) P(R,  t )  d Vs + 
v s  

N(aaa - a b b l 2  

47T 
g Aexp (- iwot) 

x dVs d cos 80 d cos 8 dqo dcp (24) 

x (cos 8 sin 8 sin c p ) ~  (cos 8 sin 8 sin q) 
x P(R, 8, q, t )  dVs d cos 80 d cos 8 dqo d q  . 

N is the number of scatterers within the scattering volume Vs, and dVs indicates 
the volume element and corresponding integral over the scattering volume (the 
illuminated volume which is focused onto the detector). The P(a)  functions in 
these expressions are the space-time and space-time-orientation correlation 
functions. P(R, t )  is the probability per unit volume that if a scattering centre 
is at position R = 0 at t = 0, there will also be a scattering centre at R at t .  
Thus, it is evident that P(R,  t )  contains both the self and distinct terms in both 
space and time as described following equation (23). P(R, 8, cp, t )  is the space- 
time-orientation correlation function which is the probability per unit volume 
that if a particle's centre of interaction is at R = 0 with orientation 80 and q o  
at t = 0, there will also be a particle at R with orientation 8 and q at t .  The 
additional factor of [1/(47r)] associated with theP(R, 8, q, t )  probabilities assumes 
normalization of the probabilities to the t = 0 initial conditions of 

Equations (24) and (25) will be used at various points in the remaining parts 
of this paper to describe the scattering from rotationally quenched systems. We 
will use hydrodynamic theories to obtain expressions for P(R, t )  andP(R, 8, cp, t ) .  
For instance, P(R,  t )  in the first term of equation (24) is obtained for a pure 
liquid from a solution of three coupled equations; the continuity equation, the 
Navier-Stokes equation, and the energy transfer equation which leads to 
Rayleigh-Brillouin scattering (see next Section). 

The total intensities from Cz(t = 0) and Cy(t = 0) are obtained by substituting 
the appropriate initial or static conditions into equations (24) and (25). Using 

P(R, 8, y, t )  = 8(R) S(C0S 8 - cos 80) S(Cp - yo). 
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P(R,  0) and P(R, 8, 9 , O )  = P(R,  0) &cos 8 - cos 80) 8(cp - q o )  in equations 
(24) and (25) gives the intensities: 

Iv" = Cz(0) = A N p ( K ,  0) [a2 + &aaa - a b b ) 2 ]  = I i s o  + 4Ianis 

Ih" = Cy(0) = ANF(K, 0) (&)(a:a@ - a b b ) 2  = Ivh  = Ihh = Ianis  

(26) 

(27) 

Thus, if z-polarized incident radiation is used and observations are made in the 
xy plane, the ratio of perpendicular to parallel polarized light intensities is 

This depolarization ratio is a well-known result. Wilson et al.9 have derived a 
number of depolarization ratios by using similar methods. Equations (26) and 
(27) are general for any type of molecule by replacing (aaa - Olbb)' with 
&[(auu - am)2 + (am - acc)2 + (acc - a a a ) 2 ] .  The Ivv and Ih" notation is 
shown in Figure 1 and the other types of 1~~~~~~~ are also evident from the 
geometry in Figure 1. The Ihh expression in equation (27) is easily derived 
giving a correlation function equal to the result in equation (25) with the 
cos 8 sin 8 sin cp dependence being replaced by sin2 8 sin cp cos cp. It is then easy 
to show that I h h  = Ihv as indicated in equation (27). 

We now return again to equations (11) and (12) and repeat the analysis 
described above including the effects of parallel vibrations in the linear molecule. 
Substituting equations (20) and (21) into equations (11) and (12) and repeating 
the quenched rotational state analysis described above gives 

4A N(aaaO - a b b o ) 2  
CZ(t) = A exp (- iwot) N(cxO)~P(K, t )  + - exp (- iwot) -- 

9 47r 
x H(K, 8, cp, t )  + A exp (- iwot) exp (iconj,,njt) c ( K ,  t )J j  exp (- t / ~ j )  

N(aaa0 - a b b o ) 2  r 
Cy(t) = A exp (-hot)  P(K,  8, cp, t )  + A exp (- iwot) 

47T 

c ( K ,  t )  = exp (- iK*R) G(R, t )  d Vs 
Jv3 

E. B. Wilson, jun., J.  C. Decius, and P. C. Cross, 'Molecular Vibrations', McGraw-Hill, 
New York, 1955. 
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x G(R,  8, q, t )  d Vs d cos 80 d cos 8 dqo d q  

x (cos 8 sin 8 sin q) x P(R,  6,  cp, t )  dV, d cos 8 0  d cos 6' dqoo d q  

x (COS 8 sin 6 sin cp) x G(R,  8, cp, t )  d Vs d cos 00 d cos 8 dcpo d q  

Nn, is the number of molecules in the rz, state. 

The first two terms in G ( t )  are identical to the result in equation (24) and the 
first term in C&) is identical to the result in equation (25). The remaining terms 
in G ( t )  and Cy(t) are due to parallel molecular vibrations in the cylindrically 
symmetric molecule (aaa # (llbb = act). The probability functions and their 
spatial Fourier transforms (which includes the orientational averaging) use the 
important approximation that the integral over the scattering volume, Vs, can 
be extended to an integral over a scattering volume where R -+ 03 to give the 
spatial Fourier transform. The P(R, t )  and P(R, 8, cp, t )  terms contain both self 
and distinct terms. G(R, t )  and G(R, 8, cp, t )  differ from P(R,  t )  and P(R, 8, cp, t ) ,  
respectively, in that the G functions contain only the self terms. This is because 
the distinct terms in the G functions involve the molecular vibrations of pairs of 
different molecules which will have random phases with respect to each other. 
Thus, the distinct terms, involving the sums over pairs of vibrating molecules, 
are expected to vanish. Of course, if we are examining a system where distinct 
terms are in general negligible, the G and P functions will be identical. We have 
also added the exponential vibrational relaxation process to the correlation 
functions in equation (29) where rj is the vibrational relaxation time for thejth 
normal mode of vibration. 

Returning to equations (26) and (27), we can generalize to include the Raman 
terms : 

Ih"(W) = ZVh(W) = Zhh(W) = ZR;$T(U) + z y y ( w )  , (30) 
where the superscripts RAY and RAM indicate Rayleigh and Raman scattering, 
respectively . 
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In the next Sections we will examine in detail the nature of P(K,  t ) ,  P(K, 8, q, t ) ,  
G(K, t ) ,  G(K, 8,'p, t ) ,  p (K ,  8, rp, t ) ,  and E(K, 8, rp, t )  for a variety of condensed 
p hase-scat t er ing sys t ems . 
2 Isotropic Rayleigh and Brillouin Scattering in Dense Gases and Pure Liquids 
We now examine the spectra arising from the isotropic first term in CZ(t )  in 
equation (29), 

CZ(t )  = A exp (- iwot) N(LXO)~ p ( K ,  t )  , (31) 

where p(K ,  t )  is also defined in equation (29) as the Fourier transform of P(R, t ) ,  
the space-time correlation function. Of course, both the self and distinct cor- 
relations are contained in P(R, t ) .  The contribution made by this P(R, t )  term 
to the Ivv(w) spectrum in a pure liquid is most easily observed in systems where 
(aaca: - a ~ b )  = 0 and the remaining terms in CZ(t)  in equation (29) go to zero. 

Mountain10 and Pecorall have discussed the evaluation of P(K, t )  in a dense 
gas or liquid in terms of the density-density space-time autocorrelation function. 
This is equivalent to evaluating p(K ,  t )  directly from the following three coupled 
differential equations12 in P(R, t )  which is the reverse spatial Fourier transform 
of P(K, t )  needed in equation (29): 
the continuity equation 

the Navier-Stokes equation 

ar 2192 - + - VP(R,  t )  + - 
at Y Y 

vs24po VT(R, t )  - ( 4 7 s  T )  + rlB V2I = 0 (33) 

and the energy-transport equation 

W ( R ,  t )  
pocv - at 

Cv(y - 1) aP(R, t )  
4 at 

--- - NAxV~T(R, t )  = 0 . (34) 

P(R,  t )  is the probability per unit volume that a scatterer is at R at t and I is the 
probability current or flux (the number of particles passing through a unit 
cross-section per unit time). T(R, t )  is the temperature at R at time t ,  us is the 
velocity of sound in the medium, y = Cp/Cv, where C, and Cv are the heat 
capacities at constant pressure and volume, respectively, 8 is the thermal expan- 
sion coefficient, qs and are the shear and bulk viscosities, x is the thermal 
conductivity, and p is related to the number density, denoted by p = (M/NA)~o,  
where M is the molecular weight and NA is Avogadro's number. 

The use of the above linearized equations will be valid in the hydrodynamic 
realm with small excursions from equilibrium. Only the longitudinal coupling 

lo R. D. Mountain, Rev. Mod. Phys., 1966, 38, 205. 
l 1  R. Pecora, J. Chem. Phys., 1964, 40, 1604. 
l4 K. F. Herzfeld and T. A. Litovitz, 'Absorption and Dispersion of Ultrasonic Waves', 

Academic Press, New York, 1959. 
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of the velocity to the density is included. This simplification, where angular 
correlations between molecules is unimportant, will limit the final results to 
polarized spectra, Ivv  .We also note that density, or probability per unit volume, 
and temperature are used as the independent variables. Equations (32), (33), 
and (34) can be solved 

P ( K , t )  z p(K,Oj 

r 

by using Laplace and Fourier transform methods to give 

- - 2  1. p? + XNA (1 - ;)) . 
P pocv (35) 

P(K,  0) is the static correlation which we will discuss later in this Section 
x is recognized as the thermal diffusion coefficient and r is the eflective mass 
diffusion coefficient for sound waves in the medium. Equation (35) is only valid 
in the limit where vsK & K K ~ .  The first part of the p(K, t )  in equation (35) 
arises from the fluctuations in entropy at constant pressure. The decay of these 
fluctuations have a time constant of r = I / K K ~ .  The second part of &K, t )  in 
equation (35)  arises from fluctuations in pressure at constant entropy which 
leads to a propagating sound wave with velocity T~ and decay-time constant of 
rs = i/T'K?13 

We now proceed to evaluate the spectra of the scattered light. Substituting 
equation (35) into equation (31)  gives the correlation function for the isotropic 
scattering of 

Cz(K, t )  = A N a T ( K ,  0 )  {( 1 - i) exp (- iwot - rcK2t) 

1 + - [exp [ - i(w0 - v&)t - TKzt] + exp [ - i(w0 + v s K )  - rK2t11 
2Y 

where we have expanded the cos v,Kt term into its complex components. The 
real Fourier transform of Cz(K, t )  [equation (7)] gives the isotropic spectrum as a 
sum of normalized Lorentzian functions, YK and Y r :  

1 
- w ) =  - 

7T 

1 
-- 0) = - 

7i- 

1 K K ~  
( 0 0  - 0)2 + ( K K 2 ) 2  

1 r K  
(a0 * ZlSK - 0 ) 2  + ( rK2)2  

- 4 1 )  

(37) 

l3 I. L. Fabilinsky, 'Molecular Scattering of Light', Plenum Press, New York, 1968. We also 
ignore in our discussion here any possible coupling with the internal modes of relaxation in 
the molecules. See R. D. Mountain, J. Research N.B.S., 1968, 72A, 95, for further details. 
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The isotropic spectrum predicted in equation (37) is composed of a Rayleigh 
line centred around the incident radiation frequency, wo, with half-width at 
half-height of d w  = K K ~ .  In addition to the central line at 00, there are two 
Brillouin lines shifted symnietrically from 00 by f v,K on each side of the central 
line with half-widths given by d w  = r K 2 .  The ratio of integrated intensities 
for the Rayleigh and Brillouin curves give the value of y = Cp/Cv: 

This result is the well-known Landau-Placzek ratio. 
Returning now to a discussion of the Rayleigh-Brillouin spectrum, we can 

calculate the relative half-widths at half-height of the central Rayleigh [ d v  = 
(rK2)/(2r)] and side-band Brillouin [ d v  = (KK2)/(2T)] spectra from equation 
(37). We normally find that r 3- K .  Thus, the central Rayleigh spectrum is 
normally a sharper spectrum than the side-band Brillouin spectra.14 Normally 
the Rayleigh-Brillouin triplet is observed with a Fabry-Perot interferometer.15 
The parameters obtained by light scattering according to equation (35) can 
also be related to the absorption coefficient, y, for sound in the pure liquid, 
according to 

where T~ = (l)/(rK2) is the sonic relaxation time. Ultrasonic techniques have 
been used extensively to measure molecular relaxation processes.12 The tie-in 
by analysing the Brillouin half-widths has been a more recent development. 
In principle, according to the simple first-order theory given here, classical 
sound absorption experiments (y is the absorption coefficient) which measure 
y/vs2 and 7~, as a function of vs give exactly the same information through 
equation (39) as the Brillouin shifts, VB, and widths, ~ V B ,  which give the velocity 
and mass-diffusion coefficient, respectively, as a function of frequency. 

In order to evaluate the static correlation, H(K, 0) in equation (37), we return 
to our earlier discussion of the first terms in equation (22) leading to the isotropic 
term in Iv"(w) as finally written in equation (37). Rewriting the Np(K,  0) part 
of Cz(K, t = 0) from equations (22) and (24) gives 

l4 The width o f  the central line can be measured by using optical mixing techniques as shown 
by J. B. Lastovka and G. B. Benedek, Phys. Rev. Letters, 1966, 17, 1039 who measured K 

in toluene by this method. 
l6 See, for instance, G .  I. A. Stegeman, W. S. Gornall, V. Velfera, and B. P. Stoicheff, J .  

Acoust. Soc. Amer., 1971, 49, 979. 
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NF(K, 0) = N exp (iK-R) P(R,  0) d Vs = exp { - iK- [rr(O) - rj(O)]} s (: 
i=j ) ( i ,  

= (C exp { - iK- [ri(O) - ri(O)] 1 + C exp { - iK* [ri(O) - rj (O)]})  9 

where N = poVS is the total number of scatterers in the scattering volume, Vs. 
We have rewritten the bracketed term as a sum of self ( i  = j )  and distinct ( i  # j )  
terms. Accordingly, we can write P(R,  0) in terms of a self and distinct part. 
The self part of P(R,  0) is clearly a delta function in R and the second (distinct) 
term can be written in terms of a two-body radial distribution function, g(R),  
giving [g(R)  is dimensionless] 

(40) 

P(R, 0) = 8(R) + pog(R) . (41) 

g(R)  is the probability of finding a particle at R if there is another particle at the 
origin. g(R)  is normalized to unity at large distances which requires P(R, 0) to 
reduce to PO as R + a. Substituting P(R,  0) in equation (41) into equation (40) 
and using I exp (-%OR) 8(R) d Vs = 1, we can write 

c ~ ( K ,  O)isot = ~ ~ 1 1 2 ~  P(K,  0) = A C X ~ N [ S ( K )  + ~ S ( K )  J 
S ( K )  = J exp (-iK*R) (8(R) + po[g(R) - l ] }  dVs . (42) 

S(k)  is called the structure factor for the liquid16 and the 8 ( K )  term leads to the 
forward scattered light which will be indistinguishable from the forward travelling 
incident light. Thus, the S ( K )  term is the only measurable K-dependent term in 
the scattered light intensity. The integral in equation (42) can be simplified 
considerably if we are dealing with optical radiation where the distances probed 
by the radiation are considerably larger than the distances from R = 0 to the 
first few molecular diameters or periodic variations in g(R) .  Under these 
circumstances, exp (-iK-R) = 1 - iK*R + . . . z 1 and we can write 
Po exp (- iK*R) [g(R) - 1 ] d Vs z PO J [g(R)  - 1 3 d V,, which can be 
evaluated by statistical mechanics17 to give 

PO [g(R) - l]dVs = pokT ( - L:;)T - - - 1 = pokTPT - 1 . (43) s 
PT = [ - (11 V )  a V,@P]T is the gas or fluid isothermal compressibility at temperature 
T and k is Boltzmann’s constant (PT has units of inverse pressure). This final 
result is independent of K .  Of course, if static fluctuations extend out to a dis- 
tance XO (radiation) or if shorter wavelength radiation were used, the exp (- iK- R)  
part of the integrand must be included leading to a K-dependence in the final 
result. 

In summary, we note that in the low K limit where 1/K is large relative to the 
mean free path in a gas or where 1/K is large relative to the scatterer-scatterer 

P. A. Egelstaff, ‘An Introduction to the Liquid State’, Academic Press, New York, 1967. 
l7 T. L. Hill, ‘Statistical Mechanics’, McGraw-Hill, New York, 1956. 
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distance in a liquid, S ( K )  = kTp&T, and the intensity of the isotropic scattered 
light (which excludes the forward scattered light) is proportional to the compress- 
ibility of the scattering medium from 

P(K,O) = p o k T P ~  . (44) 

Substituting this result into equation (37) gives the complete result. 

3 Anisotropic Rayleigh and Raman and Isotropic Raman Scattering in Liquids; 
Translational and Rotational Diffusion 
Returning to equation (29) we will examine P(K, 8,q, t )  leading to I:$T(o), 
@K, 8, q, t )  leading to Z::F(m), and G(K, t )  leading to Iy$p(m) .  In Figure 2, 
the Zvv(v)R*Y = ZRky(v) + $ZR,$,Y(v) and Ihv(v)RAY = I:;T(v) scattered spectra 
of nitrobenzene are shown. The depolarized spectrum in the lower curve is pure 
anisotropic and the upper curve is a combination of the isotropic and anisotropic 
spectra. The Z(v)R&T triplet arises from density fluctuations as described in the 
last Section. Several depolarized or anisotropic Rayleigh and Raman spectra 
are shown in Figure 3. We note that the half-widths at half-height for both 
Z(v)!$T and Z(v)5tiF in CS2 and benzene are considerably larger than in nitro- 
benzene. Typical spectral Iinewidths at 8, = 77/2 (see Figure 1) are of the order 
of dv = 3 x 109-3 x 1011 Hz for these small molecules. 

First, we examine e ( K ,  8, q, t )  or G(R, 8, q, t )  in equations (29) which leads 
to Zt$y(v) as shown, for instance, in Figure 3. We remember that G(R,  8, q, t )  
is composed entirely of self terms, the distinct terms being zero due to the random 
phasesofvibration. Thus, G(R,  8, q, t )  contains only single particle contributions. 
We will now review the hydrodynamic Debye model for G(R,  8,q, t )  which 
describes both the centre of mass (c.m.) position (translational diffusion) and 
orientation (rotational diffusion) of the particle. The Debye model assumes that 
many collisions are required to reorientate the molecule. Beginning with the 

in equation (29), we average over the initial spherical polar 

1;" sI exp (iK-R) PZ(COS 6) Y(R, 8, q, t )  dV, d cos 8 d q  

1:" 1; Pz(c0s 8) @K, 8, q, t )  d cos 8 d q  , (45) 

where %(R, 8, q, t )  is the probability per unit volume of finding the molecular 
c.m. at R with orientation 8 and q at time t .  

We start with a discussion of one-dimensional translational diffusion of a 
cylindrically symmetric molecule from a planar delta function in number density 
in the xy plane. The flux (number of particles per unit area per unit time), J ( z ) ,  
away from this plane of high concentration, is proportional to the gradient of the 
number density, N ( z ,  t ) ,  along the z axis according to 
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Figure 2 The IVV(v)RAY and Ihv(V)RAy(& = n/2) spectra of nitrobenzene recorded with a 
Fabry-Perot interferometer at T = 297 K by A .  K .  Burnham and S. J. Bertucci with an 
Ar+ ion laser with A,, = 5145 A (see also A .  Szoke, E. Courtens, and A .  Ben-Reuven, 
Chem. Phys. Letters, 1967,1,87). The ZVV(v)RAY spectrum is a combination of the isotropic 
and anisotropicparts and the IhV(V)RAY spectrum is due only to the anisotropic component. 
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Figure 3 Depolarized Zhv(v) = Z(v)anis Rayleigh and Raman spectra for CS, and benzene. 
The vertical bars indicate the approximate instrumental widths. Polarized lasers were 
used as radiation sources and the Rayleigh spectra on the left were taken with a Fabry-Perot 
interferometer and the Raman spectra on the right were taken with a grating optical 
spectrograph. All spectra were taken with a 7712 scattering angle. We also note that 
1 cm-l = 30 gHz. The data are adapted from S. L. Shapiro and H. P. Broida, Phys. Rev., 
1967, 154, 129, F. J. Bartoli and T. A. Litovitz, J .  Chem. Phys., 1972,56, 404, and A. K.  
Burnham and S. J. Bertucci, unpublished work. 

where Dzz is the laboratory z-axis translational diffusion coefficient. In the 
absence of external or internal orientating fields, the fluid will be isotropic and 
Dzs = Dyy  = Dzz. However, Daa # D b b  = Dec for a cylindrically symmetric 
molecule. Using the mass-continuity equation leads to the diffusion equation, 

The translational diffusion tensor, D(xyz), can be written in terms of the mole- 
cular-fixed axis (abc) according to D(xyz) = e D ( a b c ) C ,  where C contains the 
direction cosines. Using arguments similar to those preceding equation (20), 
we find Dzz = D + $(Daa - D b b )  Pz(cos 8), where D = Q(Daa + Dbb + Dee). 
Substituting this result into equation (47) gives 

where 8 is the spherical polar angle as before. For an isotropic fluid, translation 
along the laboratory x, y ,  and z axes are equivalent and we generalize this 
expression to give 
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where 6' is now the angle between the cylindrical molecular axis and the R 
vector. In the absence of any rotational motion, the Pz(c0s 6') term in equation 
(48) vanishes over an isotropic distribution of molecules. However, if the mole- 
C U k  is rotating as Well as translating, the Dna - Dbb term above can lead to a 
coupling between rotation and transIation. 

Using the above developments, we now write a general equation for 
9(R, 8, q, T )  as needed in equation (45). First, we note that the Laplacian 
operator, V2, for a cylindrically symmetric molecule can be expressed as a sum 
of two terms; the first term is the c.m. Cartesian Laplacian and the second term 
is the internal co-ordinate part written in spherical polar co-ordinates : 

where ri is the distance from the c.m. to the ith atom in the molecule. We now 
substitute this Laplacian into equation (48) to write an equation in 3(R, 6, q, t ) .  
First, we note that there is no rg dependence in 9(R, 0, q, t )  which allows us to 
omit the first term in brackets in V2. We are left with an equation in Daa, 

@ = D / c  r?, the rotational diffusion coefficient (with units of 

E D  + $was - D ~ ~ )  p2(cOs e ) 1 ~ 2 ~ . ~  3 ( ~ ,  e, 40, t )  

In order to separate the rotational and translational co-ordinates in this equation 
the #(Daa - D b b )  Pz(c0s 6) term must vanish. We will drop this Daa - Dbb 
term here as Daa z D b b  in near spherical molecules, but we note that its effects 
can be obtained by using perturbation techniques. Setting Daa - Dm = 0 in 
equation (49) and spatial Fourier transforming the result gives 

Writing @(K, O , q ,  t )  in terms of separated variables, g ( K ,  6,q,  t )  = g ( K ,  t )  
x 9 ( 8 ,  q), solving the corresponding differential equations, and using the 
Y(R,  0) = 8(R) initial conditions for the self terms, leads finally to the following 
solutions for G(K, t )  and c ( K ,  8, q, t ) :  
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c ( K ,  t )  = exp (- K2Dt)  

G(K, 8,q,  t )  = - exp (- [6@ + K 2 D ) t ]  , (51) 
47T 

5 

where Tor = 1/(6@) is the single particle reorientation relaxation time. It is 
also easy to show by the above methods, that E(K, 8, cp, t )  in equation (29) is 
also equal to +G(K, 8,q, t )  in equation (51) for the cylindrically symmetric 
scatterers considered here. Substituting these results into the appropriate parts 
of the correlation functions in equation (29) and Fourier transforming gives the 
Raman spectra in the rotationally quenched limit : 

DK2 + 6 0  + 1/73 
(w - wo + w ~ ? , , ~ , ) ~  + [ ( l ) / (~j )  + D K 2  + 6012 

Normally only the Raman Stokes transitions are observed [En, < Ennj in 
on,,, nj = (Enej  - Enj)/ ( f i ) ]  due to the Boltzmann factors in and h3 [equation 

The 9(co)isot Raman spectra have a half-width at half-height of d w  = l / ~ j  + 
D K 2  where 7 3  is the vibrational relaxation time for thej th  normal mode of 
vibration. Noting that D z ( 1 0 - c 1 0 - 5 )  cm2 s-1 for most liquids and 7 3  z 10-l2 
s for most molecular vibrations in liquids, we can safely write 1 /73  > K 2 D  for 
optical radiation and any scattering angle. Thus, a measure of the Raman 
-Y(W)isot gives, from the half-width at half-height, a direct measurement of the 
vibrational relaxation times. Several values of 7vib obtained in this way are 
listed in Table 1 .  

The 9 ( o ) a n i s  Raman spectra have a half-width at half-height of 
do = 1 / 7 3  + D K 2  + 6 0 .  Typical small molecule values of @ range from 
109-1012 s-l and if we are using optical radiation we are safe in writing 
6 0  3- D K 2  for any scattering angle. Thus, a measure of the Raman g ( W ) a n i s  

gives from the half-width at half-height, a direct measurement of the rotational 
diffusion coefficient, @, or the orientational relaxation time, Tor = (1)/(6@). 
Several values of Tor obtained in this way are listed in Table 1.  Of course, 
IVw(v)RAM = IR&y(v) + +I:$y(v) and Ih"(u)RAM = I:$Y(v) are measured. 
IR&f/l(v) can be extracted from IV2)(v)R*~~ by subtracting 41#(v)RAM. 

Keeping in mind our original model of a cylindrically symmetric near-spherical 
shaped molecule reorientating about its symmetry axis, we note that the values 

(29) 1 .  
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Table 1 Vibrational relaxation times, 7v i  b, and rotational orientation times 
Tor = 1/(6@) for several molecular liquids from the Raman spectra 

Vibrational 

Mo Iecule 
carbon disulphide CS2 
acetonitrile CH3CN 
methyl iodide CHd 

chloroform CHC13 

bromoform CHBr3 

benzene C6H6 
hexafluorobenzene C6F6 

transition 
/cm-l 

656 
2943 
525 

1245 
667 

3019 
222 

3019 
992 
558 

1 
Tvib/10-12S 6 0  = 
10.6a 
3.2b 
2.0a 
2 .Oa 
2 .oa 
1.1a 
4.1a 
1.2c 
4.7d 
2.2a 

' T O ~ / ~ O - ~ ~ S  

1.5a 
0.9b 
1.Y 
1.4u 
1 9  
1.5" 
5 . 3 a  
4.4c 
2.8d 
6.6a 

a F. J .  Bartoli and T. A. Litovitz, J .  Chem. Phys., 1972, 56, 404. 
b J. E. Griffiths, J .  Chem. Phys., 1973, 59, 751. 
c G.  D. Patterson and J. E. Griffiths, J. Chem. Phys., 1975, 63, 2406. 
d K. T. Gillen and J. E. Griffiths, Chem. Phys. Letters, 1972, 17, 359. 

of @ and D can be written according tof = 67rqr for the frictional force constant18 
as D = (kT) / f  = (kT)/(67rqr) and @ = (kT)/(8777r3) = (kT)/(6V*q),  where k is 
Boltzmann's constant, q is the shear viscosity of the solution, r is the effective 
particle radius in the fluid, and V* = 477r3 is the effective molecular volume. 

We now examine I:$y(v) which arises from the Fourier transform of 
P(K,  8, q, t )  in equation (29). p ( K ,  8 ,q ,  t )  is similar to G(K, 8, q, t )  considered 
above where c ( K ,  8, cp, t )  contains only the self terms and P(K,  8, q, t )  contains 
both the self terms and the distinct terms. Thus, we expect the difference between 
P(K,  8, q, t )  and c ( K ,  8, cp, t )  or l",y(v) and I t$y(v) ,  respectively, to reveal the 
distinct effects or the two-particle orientational pair correlations. A direct 
comparison of It$F(v) and IR$M(v) for CS2 and benzene is shown in Figure 3. 
It is evident that the half-width at half-height of l ~ ~ ~ ( v )  is smaller than in 
I t$F(v)  in CS2, thus, reflecting the effects of the orientational pair correlations. 
However, in benzene it appears that the half-widths of IR$y(v) and Z$$y(v) are 
the same indicating no orientational pair correlation effect. The values of 
7R,4y = l/(dw) [where do is the half-width at half-height in lt::(v)] for 
several molecules are listed in Table 2. Comparing rRkY in Table 2 with Tor in 
Table 1, for the few molecules which have entries in both tables, shows that 
Tor 5 rRhY or that the effects of orientational pair correlations cause an 
effectively longer rotational relaxation time. The orientational pair correlations 
also affect the integrated intensities of the anisotropic Raman and Kayleigh 
scattered light. According to equations (28) and (29), the above discussion, and 
arguments similar to those preceding equation (40), we can write 

L. D. Landau and E. M. Lifshitz, 'Fluid Mechanics', Addison Wesley Publishing, Reading, 
Massachusetts, 1959; J.  Frenkel, 'Kinetic Theory of Liquids', Dover Publishing, New 
York, 1955. 
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Table 2 Rotational orientation times rRkY, which are obtainedfrom the half- width 
at half-height of the depolarized Rayleigh lines, d w  = I/rRky, as shown for 
instance in Figure 3. The temperatures are near 300 K 

Molecule TRAY/10-12 s 
carbon disulphide 1 . P  
acetonitrile 1.7a 
methyl iodide 2.3a 
chloroform 2.9b 
bromoform 1 0 . 1 c  
benzene 2.9& 
hexafluorobenzene 14.0" 

a S. J. Bertucci and A. K. Burnham, unpublished data, 1976. 
G .  R. Alms, D. R. Bauer, J. I. Brauman, and R. Pecora, J.  Chem. Phys., 1973, 59, 5310. 
G. D. Patterson and J. E. Griffiths, J. Chem. Phys., 1975, 63, 2407. 
G. R. Alms, D. R. Bauer, J. I. Brauman, and R. Pecora, J .  Chem. Phys., 1973, 58, 5570. 
D. R. Bauer, J. I .  Brauman, and R. Pecora, J. Chem. Phys., 1974, 61, 2255. 

for thejth normal mode in Z::? where N = VSpo is the number of scatterers. 
Substituting from equation (51) and assuming that rotational and translational 
motion are separable gives 

The remaining independent sum over i and j where i # j is over all pairs of 
molecules within the volume element Vs. Thus, if each of the scattering molecules 
are identical, all terms in one of the sums will be the same and we can write 

where the last term includes the long-time average of the N - 1 identical i 
terms which are summed over j ( j  # i). We now use the spherical harmonic 
addition formula to write PZ(COS 6)i PZ(COS 6)j in terms of Pz(c0s &g) ,  where 6ij 

is the angle between the cylindrical symmetry axes of the i j  pair of molecules. 
Using the ergodic hypothesis, we replace the time average with a spatial average. 
Making these changes, we write 
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(? 
1 +  

where the last step assumes that ( N  - 1) /N  = 1 which requires a large number 

of particles in the scattering volume. C PZ(COS 8i j )  is the sum of average 
( j  ) 

values of Pz(c0s 8i j )  = B(3 6032 8ij - 1)  between the N - 1 ij-pairs of molecules 
in the fluid. Substituting the results in equations (56) and (51) into I:,$: and 
I::? respectively, in equation (53) gives the integrated intensities,19 

1 
15 

1;;: = - Ag2N(aaao - CXbbo)2 

Thus, according to these results, if a pure solution of monomeric cylindrically 
symmetric molecules would suddenly dimerize with symmetry axes aligned, 

= 1 ,  and g2 = 2, thereby increasing the intensity of 1:2:. 
( j  ) 
If the dimerization would occur with symmetry axes perpendicular, 

CPz(cos8ij) = -4, gz = fr and the intensity of Z:;: would decrease. 
( j  ) 
Similar arguments can be made of trimers and higher order polymers. A diagram 
of g 2  as a function of density from I:,$: in the isotropic liquid phase in MBBA, 
a rod-like molecule which forms a liquid crystal phase, is shown in Figure 4. 
The evidence for increasing alignment with increasing density, as measured 
from I::: and the resultant g2, is quite convincing. Of course, g 2  + a3 as the 
system approaches the liquid crystal phase. 

In the limit of Debye diffusion, where many collisions are necessary to cause a 
molecular reorientation, Keyes and Kivelson2O have shown that the time- 
dependent part of the correlation function also contains g 2  according to [see 
equation (51) where T o r  = 1/(6@)] 

cPz(c0s 8ij) 

Is We have ignored a very important problem in extracting the value of g, from the intensities 
of the scattered light. This problem involves the effects of shielding of the incident radiation 
field in the scattering medium ; the local field problem. Fortunately, experimental methods 
have been devised to measure and cancel the effects of the local field (T. D. Gierke and 
W. H. Flygare, J.  Chem. Phys., 1974,61,4083, and A. K. Burnham, G. R. Alms, and W. H.  
Flygare, J.  Chem. Phys., 1975, 62, 3298.) 

2o  T. Keyes and D. Kivelson, J .  Chem. Phys., 1972, 56, 1057. 
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i 
Figure 4 Experimental determination of g, as a function of density fionz 

as shown in equation (57). The system studied is the isotropic liquid p-methoxybenzylidene- 
n-butyhniline (MBBA) at T = 318 K which is above the transition temperature for the 
liquid crystal phase. The data are from G.  R. Alms, T.  D. Gierke, and W.  H.  Flygare, 
J. Chem. Phys., 1974,61,4083. 

where 70rg2 = T ~ $ ~  is defined in Table 2 as obtained from the half-width at 
half-height of the I:$?(CLJ) spectrum. 

More recently, theory and experiment has been extended to a study of orien- 
tational pair correlations in a series of CzV type molecules (substituted benzenes) 
where a definite correlation is found between the magnitude of the orientational 
pair correlation and the dipole moment of the molecule.21 

Another active area of research in interpreting the depolarized light scattered 
from small molecules involves the interpretation of the dynamics of the diffusion 
process. This topic has been recently reviewed.22 

4 Concentration Fluctuations and Electric Field Effects 
In this Section a number of principles which are applied to light scattering from 
solute molecules in solutions are examined. Before discussing scattering from the 
solute molecules in a dilute solution, we remember that the solvent will certainly 
scatter light as described in Sections 2 and 3 where we considered pure liquids. 

a 1  S. J. Bertucci, A. K. Burnham, G. R. Alms, and W. H. Flygare, J .  Chem. Phys., 1977, 66, 

* a  D. Bauer, J. Brauman, and R. Pecora, Ann. Rev. Phys. Chem., 1976, 27,443. 
605. 
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In this Section we will show that concentration fluctuations of solute molecules 
give rise to an additional isotropic scattering which allows the measurement of the 
translational diffusion coefficient of the solute molecule in the solvent. We will 
also show the effects of an electric field and the measurement of mobilities by 
light scattering. 

In the case of a small dilute solute non-vibrating molecule with cylindrical 
symmetry (aaa # a b b  = act), the distinct terms in the correlation function will 
be insignificant and the resulting correlation function and spectrum can be 
given by arguments similar to those leading to equation (52) for Raman scattering. 
The results for concentration fluctuations of a solute non-vibrating molecule 
give the following spectra: 

A 
Zh"(U)R*Y = ( a a a  - a b b ) 2 N 9 ( o  - W0)anis 

r D K 2  1 

L(w - W O ) ~  + ( D K 2  + 6@)2_] 

where A is defined in equations (12) and (13) and all other terms have been 
defined previously. In the case of a very dilute solute, D is the solute self-diffusion 
coefficient in the solvent. In a binary mixture of A and B at a higher concentration 
of solute, the measured diffusion coefficient will be the mutual diffusion coefficient, 
DAB, given to first order (in an ideal A-B solution) by 

DAB = DAXB + DBXA , (60) 

where X A  is the mole fraction of A in the solution. 
In order to relate the single particle intensities in equation (59) to the pro- 

perties of a solute in a solution, we assume that the fluctuations in concentration 
which give rise to the scattered spectra in equation (59) are independent of the 
density fluctuations giving rise to the Rayleigh-Brillouin spectra. Under these 
circumstances, T a n f ~ r d ~ ~  has shown that a2 and (aaa - abb)  should be replaced 
with 

cy2 % [-$).]' (i) (1/M + 2B1C + 3B2C2 + . . . 
for the solute in the solvent where C is the concentration ( C / p  = M ) ,  M is the 
mass of the scatterer, n is the refractive index of the solution, and no is the refrac- 

23 C. Tanford, 'Physical Chemistry of Macromolecules', John Wiley and Sons, New York, 

). (61) 
1 

1961. 
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tive index of the solvent. B1 and B2 are the virial coefficients which give rise to a 
decrease in the isotropic scattering intensity at higher concentrations. Sub- 
stituting equation (61) into equation (59) and assuming no orientational 
correlations gives the complete spectral function for polarized incident radiation 
(Figure 1) in a dilute solution of N small solute scatterers, 

1 
1/M + 2B1C + 3BzC2 + . . ] (? [(g).]’ 

N(aaa - ~ B B ) ~  Z(W - u0)anis 

where A?(m - WO)isot and A?(u - W0)anis are given in equation (59). The relative 
intensities of the isotropic concentration dependent effect in equation (62) can 
be compared directly with the total Rayleigh-Brillouin intensity for the isotropic 
density fluctuation effects considered in Section 2. Substituting equation (44) 
into C(K,  0) in equation (36) and comparing with the frequency-integrated form 
of the isotropic term in equation (62) shows that the relative intensities are given 
by 

Solute in 
dilute solution Pure liquid 

a2Npokq T 
M2N’no2 - -  [ ( 2)0]2 

47T2 
9 

where N = PO Vs is the number of pure liquid scatterers and N’ = pbVs is the 
number of solute scatterers where Vs is the scattering volume. The value of 
(an/aC)o needed above can be measured for the particular system in question. 
We can estimate (an/aC)o by assuming an ideal solution where the refractive 
index of the solution can be evaluated by the mole fraction weighted sum of the 
individual pure-fluid refractive indices, 

n = naXa + n b x b  = na + Xb(nb - na) . (63) 
n is the refractive index of the solution, na and nb are the refractive indices of 
liquids A and B, and Xa and xb are their respective mole fractions. The mole 
fraction of a dilute solution of solute B in the solvent A is given by 

where C is the concentration of the solute B, Mb is the mass of a solute molecule, 
and pa is the number density of the solvent. Substituting equation (63), differen- 
tiating with respect to the concentration of B giving an/aC, and substituting this 
result into the above expression under ‘solute in a dilute solution’, gives 
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It is evident from this equation that the solute (B) scattering is proportional to 
the square of the difference in solvent-solute refractive index difference. 

Consider now the benzene solute concentration fluctuation scattering intensity 
in a CC14 solvent at T z 300 K. The x2NpokTpT = a2Vspo2kT,~  scattering 
factor for the CC14 solvent at 239 K can be obtained by using a = 10.5 x 10-30 

m3, PO = 1.04 x molecules m-3, and , 8 ~  = 10.7 x 10-10 m2 N-1 to give 
a2p02kT,8~ = 3 x lo-". The benzene solute concentration fluctuation scattering 
factor in a CC14 solvent is obtained from equation (65), where pa(CC14) is given 
above, Mb = 1.297 x kg, na = 1.4590 and nb = 1.5011, which gives 
C(nb - na)2/(4rMbpa2) = 6.8 x C. According to these numbers, the total 
benzene scattering intensity in the cc14 solvent will exceed the solvent scattering 
at concentrations above C = 10 kg m-3 (for equal scattering volumes), which is 
a relatively low concentration. We have also chosen a solute solvent ( r ia  - nb) 
which is quite small. In conclusion, it is evident that concentration fluctuations 
scattering can be much more intense than the background solvent Rayleigh 
scattering even at relatively low concentrations.24 

We now note that the intensity of the anisotropic Lorentzian [equation (62)] 
will normally be less than the isotropic term. Of course, in cc14, aaa - a b b  = 0 
and the anisotropic term is zero. However, assuming that aaa - a b b  = m3 
and remembering that PO = C/M, we can write the multiplier of the second 
Lorentzian in brackets in Ivv (~)RAY in equation (62) as -&0(aaa - cIIbb)2 = 
$F(C/M)(aaa - = 6.8 x C, which is considerably less than the 
multiplier of the first Lorentzian in Ivv(v)RAY as shown above. Thus, the 
Lorentzian with dw = K2D normally dominates the Iv"(w)R*Y spectrum in 
equation (62). It is also evident that the D K 2  half-widths considered here will be 
smaller than the K K ~  half-widths considered in Section 2, because D < K . ~ ~  

Of course, we have also assumed that there is no coupling between the con- 
centration fluctuations described here and the density fluctuations described in 
Section 2. As the solute particles became larger relative to the solvent molecules, 
the above separation between the concentration fluctuations (and the measure- 
ment of the translational diffusion) and the other effects described above become 
more pronounced. Several diffusion coefficients for macromolecules are listed in 
Table 3. 

In some of the large molecules listed in Table 3, the size of the scatterer 
approaches the wavelength of the radiation. Under these conditions, scattering 
from different parts of the same molecule leads to both static and dynamic (if 
the molecule is rotating) correlations. The static correlations lead to a K-depen- 

2 4  A thorough study of mutual diffusion in binary systems of small molecules has been given 
by S. J. Bertucci and W. H. Flygare, J .  Chem. Phys., 1975, 63, 1 and K. J. Czworniak, 
H. C. Andersen, and R. Pecora, Chem. Phys., 1975, 11, 451. These efforts show that the 
translational diffusion in ideal binary systems can be expressed in terms of transferable 
molecular diameters for the molecules. 

z5 P. Berge, P. Calmettes, M. Dubnis, and C. Laj, Phys. Rev. Letters, 1970, 24, 89. 
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dence in the total scattered isotropic intensity leading to a measurement of the 
radius of gyration. The dynamic correlations lead to spectral characteristics 
which allow the measurement of the rotational diffusion constant, 0, by examining 
the spectrum of the isotropically scattered light.26 

Table 3 Diflusion constants measured at T = 293 K in water solutions and 
molecular weights in atomic mass units of several molecules of various sizes 

Molecule 0/10-11 m2 s-1 M/u* 
Glycine 93.4 75 
Sucrose 45.9 342 
Ribonuclease 10.7 13 683 
Bovine serum albumin 6.1 67 OOO 
Oval bunim 7.1 45 OOO 
L yzozyme 11.5 14 100 
Tropomyosin 2.20 93 OOO 
Fibrinogen 2.00 330 OOO 
Myosin 1.10 490 OOO 
Tobacco mosaic virus 0.29 40 x lo6 
Latex spheres (d = 910 A) 
Calf thymus DNA 0.2 ca. 5 x 106 

* Data from ref. 23, and S. B. Dubin, J. H. Lunacek, and G. B. Benedek, Proc. Nat. Acad. 

0.52 

Sci. U.S.A., 1967, 57, 1164. 

We will now examine the principles involved in electrophoretic light scattering2‘ 
which involves the observation of laser light scattered from a solution of charged 
macromolecules which are moving with a drift velocity Vd in the presence of an 
electric field. We will consider only relatively small molecule scattering here 
where equation (62) gives an appropriate description of the spectrum of the light 
scattered in the absence of any perturbing electric fields. 

Most protein inacromolecules are charged at a given pH and in the presence 
of an electric field the ions in solution will experience a force in the field causing 
them to translate with a drift velocity, Vd, given by Y d  = pE, where Eis the electric 
field vector and p is the scalar mobility. In the case of spheres, the mobilities and 
diffusion coefficients of the ionic molecules are related by p / D  = eZ/kT, where 
e is the electronic charge, 2 is the effective number of charges on the translating 
ion (including the effects of the electrophoretic counterions), k is Boltzmann’s 
constant, and Tis the temperature. Return now to equation (46) and consider 
the flux of molecules along the z axis following the concentration fluctuation in 
the xy plane as shown. In the presence of an electric field component along the 
z axis, the electrostatic force on the charged (ionic) molecules in solution will 
give rise to an additional flux along they axis. The total flux is given by modifying 
equation (46) according to (Daa = Dbb = Dcc = D)  J ( z )  = - D dP(z, t ) / dy  + 
2 6  For details see B. Berne and R. Pecora, ‘Dynamic Light Scattering’, John Wiley and Sons, 

27 B. R. Ware and W. H. Flygare, Chem. Phys. Letters, 1971, 12, 81. 
New York, 1976. 

135 



Light Scattering in Pure Liquids and Solutions 

udP(z, t). Combining this expression with the z axis mass-continuity expression 
gives the modified one-dimensional Fick’s law in P(z, t) in the presence of the 
electric field according to 

The solution to this equation is easily obtained by Fourier transform methods as 
described before to give 

P(K,, t)  = p(&, 0) exp ( -KU2Dt - iK,vdt) , 

where p(K,, 0) = 1 .O for uncorrelated scatterers. In three dimensions this equa- 
tion takes the form 

p(K, t )  = exp (- K2Dt - iK*vdt) = exp (- K2Dt - ipK-Et) . (67) 

Kovd = pK.E  = pKEcos a, where a is the angle between the static electric 
field and the K vector. Remember that the K vector always bisects the angle 
between the direction of the incident and scattered light (see Figure 1). Sub- 
stituting equation (67) into the first term of G ( t )  in equation (29) for self terms 
only gives the correlation function in the presence of the electric field. Sub- 
stituting a2 from equation (61) and Fourier transforming gives, finally, 

1 
IvW(0)isot = - 1/M + 2B1C + 3&C2 + . . . 

It is quite apparent that the only difference between this expression and the 
isotropic result in equation (62) is the translation in o of p K - E .  By using optical 
mixing techniques the real part of the correlation function for concentration 
fluctuations has been observed in solutions of bovine serum albumin (BSA) in 
the presence of an electric field and the data are shown in Figure 5 for several 
electric fields. A spectrum showing the field-dependent Doppler shift is shown in 
Figure 6. The experiments illustrated are all at low angles of scattering and the 
electric field orientation is perpendicular to the direction of the incident light. 
This configuration leads to the highest resolution in the electric field effect where 
the shift in frequency divided by the half-width of the line defines the resolution, 
Rep 

V d * K  VdK COS (8/2) )lo/& COS ( q 2 )  
(69) - R e = -  - - - 

K2D K2D 47rnD sin (8/2) 

For very small angles, 
)copE Ze)loE limR - - --  - 

8 4  ’- 2mD8 2~nkT6’  
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ZERO FIELD 

E=11500 Vm-’ 

E=13500 Vm-l 

E = 1 5 0 0 0 V m ~ ~  

Figure 5 The observed real part of the correlation function in equation (67) for several 
electric fieids from reference 27. 

where n is the solution refractive index and p/D = (eZ)/(kT) is also used in the 
last step of equation (70). Additional details and a summary of the literature 
in the field of electrophoretic light scattering have been given recently.28 
3n W. H. Flygare, S. L. Hartford, and B. R. Ware, in ‘Molecular Electro-Optics’, ed. C. T. 

O’Konski, Marcel Dekker, New York, 1977. 
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Figure 6 The spectrum of light scattered from concentration fluctuations in calf-thymus 
D N A  where optical mixing techniques reduce the laser frequency reference to zero. 
0.1 mg D N A  was dissolved per ml water with an ionic strength of 0.01 at T = 213 K .  
The analysis of the shijt in frequency of 50 Hz at 5000 Vrn-l leads to a mobility of 
p = 3.5 x 10-9 m2V-1s-1. The half-width at half-height leads to a translational difiision 
coeficient of D = 1.2 x 10-l1 m2s-'. The data are from S. L. Hartjord (see also S. L. 
Hartford and W, H. Flygare, Macromolecules, 1975, 8, 80). 
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